儲能BMS均衡技術(shù)主要是指電池管理系統(tǒng)BMS中用于維護(hù)電池組中各個單體電池電量一致性的技術(shù)。其基本原理是通過監(jiān)控電池組的充放電狀態(tài),以及各個單體電池的電壓、電流、溫度等參數(shù),然后通過相應(yīng)的控制策略,對電池單體進(jìn)行充放電過程中的調(diào)節(jié),降低電池單體之間的不均衡特性,使得各個單體電池的電量盡可能地保持一致,從而提高整個儲能系統(tǒng)的性能和壽命。目前,有兩種常見的均衡方式:被動均衡和主動均衡。這兩種方法都適用于比較大限度地提高可用容量和延長電池壽命。 BMS系統(tǒng)保護(hù)板具有短路保護(hù)功能,當(dāng)檢測到電池組內(nèi)外部發(fā)生短路時,立即切斷電源,防止短路造成的損害。光伏BMS電池管理系統(tǒng)
被動均衡主要依賴于電阻放電方式,將電壓較高的電池中的電量以熱能的形式釋放,從而為其他電池創(chuàng)造更多的充電時間。整個系統(tǒng)的電量受限于容量較小的電池。在充電過程中,鋰電池通常設(shè)有一個上限保護(hù)電壓值,一旦某一串電池達(dá)到此值,鋰電池保護(hù)板便會切斷充電回路,停止充電。被動均衡的優(yōu)點在于成本低廉且電路設(shè)計相對簡單,但其缺點在于只基于較低電池殘余量進(jìn)行均衡,無法提升殘量較少的電池容量,且均衡過程中釋放的熱量完全浪費(fèi)。 低速電動車BMS測試通過溫度傳感器實時監(jiān)測電池的溫度,當(dāng)溫度過高或過低時,BMS系統(tǒng)保護(hù)板會采取相應(yīng)的措施。
船用液冷儲能柜配置一套能源管理EMS系統(tǒng),對電池系統(tǒng)、變流系統(tǒng)、配電系統(tǒng)等狀態(tài)進(jìn)行監(jiān)控及能源優(yōu)化調(diào)度;能夠?qū)崟r動態(tài)、綜合掌握各單元的運(yùn)行情況,提供完善的運(yùn)行數(shù)據(jù)查看、報警提醒及報表分析等功能,為設(shè)備運(yùn)行情況分析、設(shè)備問題判斷和運(yùn)行策略優(yōu)化提供有力的決策依據(jù),并完成上級監(jiān)控系統(tǒng)的信息交換及指令傳遞。EMS的功能主要運(yùn)行控制策略是削峰填谷、需量管理控制。同時,EMS系統(tǒng)還支持云平臺、APP查詢數(shù)據(jù),監(jiān)測現(xiàn)場系統(tǒng)運(yùn)行狀態(tài)。
主動均衡技術(shù)的痛點:設(shè)備采購成本較高當(dāng)前新能源板塊發(fā)展突飛猛進(jìn),每個從業(yè)單位參與的項目單量和項目數(shù)量越來越多,很多項目前期的方案搭建以及交付投運(yùn),較大權(quán)重地考慮成本,在剛好滿足下級用戶當(dāng)前技術(shù)需求的前提下,以盡可能便宜的原則選擇均衡產(chǎn)品。導(dǎo)致很多項目選型環(huán)節(jié),下級用戶認(rèn)可主動均衡的產(chǎn)品和技術(shù),也了解全生命周期主動均衡經(jīng)濟(jì)性的更加合理性,但考慮當(dāng)前量級的項目因為選擇采購主動均衡BMS要多花¥,往往很可能還是選擇當(dāng)前就滿足下級用戶的被動均衡產(chǎn)品。主動均衡相對增加了風(fēng)險點基于不同廠家主動均衡技術(shù)的差異性,主動均衡在BMS內(nèi)部增加了分離式或集成式的均衡電路,其中包括均衡充放電模塊裝置、均衡電源驅(qū)動裝置、均衡控制狀態(tài)等,這些從硬件增加的角度增加了可能失效的風(fēng)險點。部分BMS企業(yè)過于追求3A、5A甚至更高的大電流均衡,于均衡技術(shù)本身沒有什么技術(shù)難點,但對系統(tǒng)既有的協(xié)配件的選型匹配存在挑戰(zhàn)與風(fēng)險。行業(yè)PACK包內(nèi)采集線束的線徑可能只有、CCS方案銅膜的載流能力、PACK內(nèi)的發(fā)熱及散熱、相對熱的環(huán)境下電池的壽命等都可能是關(guān)聯(lián)影響因素。 對于電池管理系統(tǒng)(BMS)而言,除了均衡功能外,均衡策略的制定同樣至關(guān)重要。
隨著移動互聯(lián)網(wǎng)的發(fā)展,用戶對于實時數(shù)據(jù)監(jiān)控和便捷管理的需求越來越強(qiáng)烈。通過移動端小程序,用戶可以輕松實現(xiàn)“手持一站式”儲能電運(yùn)維管理。這種實時的數(shù)據(jù)訪問和操作能力,極大地提升了運(yùn)維效率,降低了運(yùn)維成本。此外,這也體現(xiàn)了數(shù)字化和智能化的趨勢,使得用戶能夠隨時隨地獲取電站信息,從而做出及時有效的經(jīng)營決策。總體來看,這三大變革共同指向一個方向:儲能BMS正在從單純的電池管理系統(tǒng)向更加綜合、智能的數(shù)據(jù)服務(wù)和能源管理平臺轉(zhuǎn)變。這樣的發(fā)展趨勢不僅提高了儲能系統(tǒng)的整體效能,也為用戶帶來了更加便捷的使用體驗,預(yù)示著儲能行業(yè)的未來將更加側(cè)重于數(shù)據(jù)驅(qū)動和智能管理。 BMS的功能模塊 BMS是連接車載動力電池和電動汽車的重要紐帶。磷酸鐵鋰電池BMS軟件設(shè)計
BMS系統(tǒng)保護(hù)板能夠確保電池組內(nèi)各節(jié)電池的壓差不大,提高電池組的充放電性能,使動力輸出更加穩(wěn)定和高效。光伏BMS電池管理系統(tǒng)
造成鋰電池活性物質(zhì)不可逆消耗的主要因素有:1)正極材料的溶解:正極材料的溶解造成正極活性物質(zhì)減少,溶解的正極材料游離到負(fù)極時會造成負(fù)極界面膜的不穩(wěn)定,被破壞的界面膜再形成時會消耗鋰離子,造成鋰離子的減少。2)正極材料的相變化:鋰離子在電極間正常脫嵌時,總會伴隨著宿主結(jié)構(gòu)摩爾體積的變化,結(jié)構(gòu)不可逆轉(zhuǎn)變,影響顆粒與電極間的電化學(xué)接觸,造成容量衰減。3)電解液的分解:在鋰離子電池充電過程中,電解液對含碳電極具有不穩(wěn)定性,因此會發(fā)生還原反應(yīng)。電解液還原消耗了電解質(zhì)及其溶劑,對電池容量及循環(huán)壽命產(chǎn)生不良影響。4)過充電:電池在過充電時,不僅會造成負(fù)極形成鋰沉淀、電解液氧化和正極氧的損失,消耗活性物質(zhì)導(dǎo)致容量不可逆損失,還會有安全隱患。5)界面膜的形成:界面膜(SEI膜)的形成會消耗鋰離子,一般發(fā)生在起初的幾次充放電時。6)集流體的腐燭:鋰離子電池中的集流體材料常用鋁和銅,兩者的腐蝕會在表面形成膜,電池內(nèi)阻增大,放電效率下降,繼而造成電池壽命衰減。 光伏BMS電池管理系統(tǒng)
BMS仍面臨多重技術(shù)挑戰(zhàn)。低溫環(huán)境下鋰電池內(nèi)阻激增導(dǎo)致性能驟降,比亞迪的脈沖加熱技術(shù)通過高頻... [詳情]
2025-07-07電池管理系統(tǒng)(BatteryManagementSystem,BMS)作為鋰電池組的中心操作... [詳情]
2025-07-04