隨著工業的發展,漏油、有機溶劑、染料和重金屬對水的污染己成為**嚴重的環境問題之一,因此必須開發出能夠有效吸收和去除水中污染物的新型材料。石墨烯三維氣凝膠由于具有高孔隙率、低密度和良好的環境友好性等特點,經常被作為一種高效的可循環吸收材料。()11[4()]等人通過GO與吡咯溶液的水熱反應制備了氮摻雜的三維石墨烯水凝膠,所得到的石墨烯骨架具有2.1mgcm-3的**密度和280m2g-1的大表面積,因此對各種類型的油和有機溶劑均有著出色的吸附能力,其吸附量高達自身重量的600倍,遠遠高于其他常見的碳材料吸附劑。常州第六元素建有自動控制規模化生產線,市場占有率居國內外前列。上海制備氧化石墨烯生產廠家
利用石墨烯的納米效應,將石墨烯和其他材料制備成復合薄膜也是石墨烯應用到熱管理中的途徑之一。如中科院陳成猛團隊[58]制備出一種柔性的石墨烯-碳纖維復合膜散熱片,結果表明其熱導率達到977W/(m·K),其熱傳遞的效果好于銅。**科大[59]制備出三維的石墨烯-碳納米環薄膜,其熱導率可達946W/(m·K)。浙江大學高超團隊[60]報道了一種快速濕紡組裝(wet-spinningassembly)的方法制備石墨烯薄膜,其熱導率達530~810W/(m·K)。可見,將石墨烯和其他材料制備成復合薄膜,復合薄膜的上海制備氧化石墨烯生產廠家氧化石墨烯是制備導熱膜的主要原料。
從化學結構可以看到,石墨烯具有垂直于晶面方向的大π鍵,此結構決定了其具有優異的電化學性能,在室溫下的導熱系數可高達5300W·(m·K)-1,能夠比肩比較好的碳納米管導熱材料。常溫下其電子遷移率甚至高于碳納米管和硅晶體,屬于世界上電阻率**小的材料。此外,石墨烯還具有完全敞開雙表面的結構特性,也就是說它類似于不飽和有機分子,能夠進行一系列的有機反應,能夠與聚合物或無機物結合,從而提升材料的機械性和導電導熱性。深入這方面的研究,對石墨烯進行官能團修飾,能夠使其化學活性更加豐富[3-4]。由于石墨烯具有上述的結構特性,越來越多的研究者開始著眼于以石墨烯為基底的合成材料。
大規模制備高質量的石墨烯晶體材料是所有應用的基礎,發展簡單可控的化學制備方法是**為方便、可行的途徑,這需要化學家們長期不懈的探索和努力;石墨烯的化學修飾:將石墨烯進行化學改性、摻雜、表面官能化以及合成石墨烯的衍生物,發展出石墨烯及其相關材料(grapheneandrelatedmaterials),來實現更多的功能和應用;石墨烯的表面化學:由于石墨烯晶體獨特的原子和電子結構,氣體分子與石墨烯表面間的相互作用將表現出許多特有的現象,這將為表面化學特別是表面催化研究提供一個獨特的模型表面;同時石墨烯具有完美的兩維周期平面結構,可以作為一個理想的催化劑載體,金屬/石墨烯體系將為表面催化研究提供一個全新的模型催化研究體系。石墨烯產品廣泛應用于電子器件、儲能材料、傳感器、半導體、航天、復合材料以及生物醫藥等領域。
石墨經過氧化處理后得到氧化石墨,氧化石墨仍保持石墨的層狀結構,但在每一層的石墨烯單片上引入了許多氧基功能團。這些氧基功能團的引入使得單一的石墨烯結構變得非常復雜。鑒于氧化石墨烯在石墨烯材料領域中的地位,許多科學家試圖對氧化石墨烯的結構進行詳細和準確的描述,以便有利于石墨烯材料的進一步研究,雖然已經利用了計算機模擬、拉曼光譜,核磁共振等手段對其結構進行分析,但由于種種原因(不同的制備方法,實驗條件的差異以及不同的石墨來源對氧化石墨烯的結構都有一定的影響),氧化石墨烯的精確結構還無法得到確定。大家普遍接受的結構模型是在氧化石墨烯單片上隨機分布著羥基和環氧基,而在單片的邊緣則引入了羧基和羰基。**近的理論分析表明氧化石墨烯的表面官能團并不是隨機分布,而是具有高度的相關性。高導電石墨烯銅復合材料的電導率可以達到108-118 % IACS,高于單晶銅和銀的電導率。福建氧化石墨烯商家
氧化石墨烯結構跨越了一般化學和材料科學的典型尺度。上海制備氧化石墨烯生產廠家
氧化石墨烯成膜過程中因氧化石墨烯片層以交錯的方式堆疊在一起,會形成納米通道,因而可作為分子篩。Li等[6和Joshi等|_6]研究發現氧化石墨烯膜具有一定的選擇滲透性,能使水化離子半徑小的離子及直徑小于納米通道孔徑的氣體分子通過,從而實現分子之間的分離。另外,氧化石墨烯膜還能吸附有機染料,可應用于污水處理、鹽水淡化和油水分離等領域_6。Wang等l_7o]研究發現多孔納米聚丙烯腈纖維支撐基底的氧化石墨烯膜能完全過濾水中的剛果紅,且對無機鹽NaSO的阻滯率達56.7。Chen等_7將氧化石墨烯和碳納米管復合制備了還原氧化石墨烯一CNT復合濾膜,發現復合濾膜滲透率高達20~3OL·m·h·bar~,且對水中甲基橙阻滯率達97.3,對其他物質的阻滯率達99%。上海制備氧化石墨烯生產廠家