CAST工藝特征1、運行靈活可靠●生物選擇器可以根據污水水質情況,以好氧、缺氧和厭氧三種方式運行。選擇器可以恒定容積也可以可變容積運行●可任意調節狀態,發揮不同微生物的生理特性●選擇器容積可變,避免產生污泥膨脹,提高了系統的可靠性●抗沖擊負荷能力強,工業廢水、城市污水處理都適用2、處理構筑物少,流程簡單●池子總容積減少,土建工程費用低●不需設二次沉淀池及其刮泥設備,也不用設回流污泥泵站3、可實現除磷脫氮●調節生物選擇器可變容積的曝氣和非曝氣順序,提高了生物除磷脫氮效果4、節省投資●構筑物少,占地面積省●設備及控制系統簡單●曝氣強度小,不須大氣量的供氣設備●運行費用低二級生物池(好氧池):利用好氧的方式處理污水,是有機物進一步的進行分解。揚州養殖污水處理工程
⑸氮:在污水處理廠中,氮的變化和含量分布為工藝提供參數。污水處理廠進水中的有機氮和氨氮含量一般較高,而硝酸鹽氮和亞硝酸鹽氮含量一般較低。初沉池氨氮的增加一般表明沉淀污泥開始厭氧,而二沉池硝酸氮和亞硝酸氮的增加,表明硝化作用已經發生。生活污水中氮的含量一般為20~80mg/L,其中有機氮8~35mg/L,氨氮為12~50mg/L,硝酸氮和亞硝酸氮的含量很低。工業廢水中有機氮、氨氮、硝酸氮和亞硝酸氮含量因水而異,有的工業廢水中氮的含量極低,在利用生物法處理時,需要投加氮肥以補充微生物所需的氮含量,而出水中氮的含量過高時,又需要進行脫氮處理,以防止受納水體出現富營養化現象。⑹磷:生物污水中磷的含量一般為2~20mg/L,其中有機磷1~5mg/L,無機磷為1~15mg/L。工業廢水中磷的含量差別很大,有的工業廢水中磷的含量極低,在利用生物法處理時,需要投加磷肥以補充微生物所需的磷含量,而出水中磷的含量過高時,又需要進行除磷處理,以防止受納水體出現富營養化現象。揚州養殖污水處理工程沉淀劑投加系統、中和系統、氧化系統等:用于調節pH值、去除金屬離子、去除顏色或沉淀懸浮物質。
制藥廢水預處理解決方案2.芬頓反應廢水經前面鐵碳微電解的處理后,部分有機污染物已被氧化去除,剩余的部分有機物的結構也已經發生了變化,有利于進一步的氧化處理。結合對此類廢水的處理經驗,廢水可以通過加入一定量的雙氧水與水中的亞鐵、催化劑離子形成自由基強氧化劑,可去除廢水中絕大多數的有機物。3.中和沉淀通過將微電解芬頓系統的酸性出水pH值調節為8左右,同時加入混凝劑,實現廢水中懸浮物等沉淀的去除。處理化工廢水時,中和沉淀過程能夠去除廢水中污染物也能作為中間工程提高廢水處理效果。
⑺石油類:廢水中的油大多是不溶于水的,且浮在水面上。進水中的油會影響充氧效果、導致活性污泥中的微生物活性降低,進入到生物處理構筑物的混合污水含油濃度通常不能大于30~50mg/L。⑻重金屬:廢水中的重金屬主要來自工業廢水,其毒性很大。污水處理廠通常沒有較好的處理方法,通常需要在排放車間內進行就地處理達到國家排放標準后再進入排水系統,如果污水處理廠出水中重金屬含量上升,往往說明預處理出現了問題。⑼硫化物:水中的硫化物超過0.5mg/L后,就帶有令人厭惡的臭雞蛋味,且有腐蝕性,有時甚至會引起硫化氫中毒事件。⑽余氯:使用氯消毒時,為保證在輸送過程中微生物的繁殖,出水中余氯(包括游離性余氯和化合性余氯)是消毒工藝的控制指標,一般不超過0.3mg/L。主要用于去除污水中的難降解有機物、重金屬離子等。常見的化學處理方法有混凝、沉淀、離子交換等。
脫水機目前國內采用的機械脫水方式主要有離心脫水機和帶式壓濾脫水機。1、離心脫水機運行中應研究進離心脫水機的濃縮污泥含固率的要求范圍,進料量(裝機容量),比較大產量,離心機差速、轉速,不同類型聚丙烯酰胺(PAM)加注率、投加濃度對離心機脫水后的污泥含固率、分離水SS值和回收率的影響。若要離心脫水機的污泥脫水處理達到理想的分離效果,可以從兩方面來考慮:轉速差越大,污泥在離心機內停留時間越短,泥餅含水率就越高,分離水含固率就可能越大。反之,轉速差越小,污泥在離心機內停留時間越長,固液分離越徹底,但必須防止污泥堵塞。利用轉速差可以自動地進行調節,以補償進料中變化的固體含量。當污泥性質已經確定時,可以改變進料投配速率,減少投配量改善固液分離;增加絮凝劑加注率,可以加速固液分離速度,提高分離效果。MBR一體化膜生物反應器的截留功能使生物細菌在反應器中存活,實現了水力停留時間(HRT)和污泥齡的分離。紹興生活污水處理公司
工業污水處理設備種類繁多,根據不同的處理工藝和需求,可以歸納為以下幾類;揚州養殖污水處理工程
電催化氧化廢水處理是電化學陽極發生氧化的過程,也可分為兩種:一種是直接氧化即污染物直接在陽極失去電子而發生氧化,有機物的直接電催化轉化分兩類進行。(1)是電化學轉換,即把有毒物質轉變成無毒物質,或把非生物相容的有機物轉化為生物相容的物質(如芳香物開環氧化為脂肪酸),以便進一步實施生物處置;(2)是電化學燃燒,即直接將有機物深度氧化為CO2。研究表明,有機物在金屬氧化物陽極上的氧化反應機理和產物同陽極金屬氧化物的價態和表面上的氧化物種有關。在金屬氧化物MOx陽極上生成的較高價金屬氧化物MOx+1有利于有機物選擇性氧化生成含氧化合物;在MOx陽極上生成的自由基MOx(·OH)有利于有機物氧化燃燒生成CO2。進一步分析如下:在氧析出反應的電位區,金屬氧化物表面可能形成高價態氧化物,因此在陽極上存在兩種狀態的活性氧,即吸附的氫氧自由基和晶格中高價態氧化物的氧。揚州養殖污水處理工程