加速度傳感器是很早廣泛應用的MEMS之一。MEMS,作為一個機械結構為主的技術,可以通過設計使一個部件(圖中橙色部件)相對底座substrate產生位移(這也是絕大部分MEMS的工作原理),這個部件稱為質量塊(proofmass)。質量塊通過錨anchor,鉸鏈hinge,或彈簧spring與底座連接。鉸鏈或懸臂梁部分固定在底座。當感應到加速度時,質量塊相對底座產生位移。通過一些換能技術可以將位移轉換為電能,如果采用電容式傳感結構(電容的大小受到兩極板重疊面積或間距影響),電容大小的變化可以產生電流信號供其信號處理單元采樣。通過梳齒結構可以極大地擴大傳感面積,提高測量精度,降低信號處理難度。加速度計還可以通過壓阻式、力平衡式和諧振式等方式實現。MEMS的單分子免疫檢測是什么?發展MEMS微納米加工共同合作
新材料或將成為國產MEMS發展的新機會。截止到目前,硅基MEMS發展已經有40多年的發展歷程,如何提高產品性能、降低成本是全球企業都在思考的問題,而基于新材料的MEMS器件則成為擺在眼前的大奶酪,PZT、氮化鋁、氧化釩、鍺等新材料MEMS器件的研究正在進行中,搶先一步投入應用,將是國產MEMS彎道超車的好時機。另外,將多種單一功能傳感器組合成多功能合一的傳感器模組,再進行集成一體化,也是MEMS產業新機會。提高自主創新意識,加強創新能力,也不是那么的遙遠。四川MEMS微納米加工服務電話公司開發的神經電子芯片支持無線充電與通訊,可將電信號轉化為脈沖用于神經調控替代。
射頻MEMS器件分為MEMS濾波器、MEMS開關、MEMS諧振器等。射頻前端模組主要由濾波器、低噪聲放大器、功率放大器、射頻開關等器件組成,其中濾波器是射頻前端中重要的分立器件,濾波器的工藝就是MEMS,在射頻前端模組中占比超過50%,主要由村田制作所等國外公司生產。因為沒有適用的國產5GMEMS濾波器,因此華為手機只能用4G,也是這個原因,可見MEMS濾波器的重要性。濾波器(SAW、BAW、FBAR等),負責接收通道的射頻信號濾波,將接收的多種射頻信號中特定頻率的信號輸出,將其他頻率信號濾除。以SAW聲表面波為例,通過電磁信號-聲波-電磁信號的兩次轉換,將不受歡迎的頻率信號濾除。
MEMS制作工藝-聲表面波器件SAW:
聲表面波是一種沿物體表面傳播的彈性波,它能夠在兼作傳聲介質和電聲換能材料的壓電基底材料表面進行傳播。它是聲學和電子學相結合的一門邊緣學科。由于聲表面波的傳播速度比電磁波慢十萬倍,而且在它的傳播路徑上容易取樣和進行處理。因此,用聲表面波去模擬電子學的各種功能,能使電子器件實現超小型化和多功能化。隨著微機電系統(MEMS)技術的發展進步,聲表面波研究向諸多領域進行延伸研究。上世紀90年代,已經實現了利用聲表面波驅動固體。進入二十一世紀,聲表面波SAW在微流體應用研究取得了巨大的發展。應用聲表面波器件可以實現固體驅動、液滴驅動、微加熱、微粒集聚\混合、霧化。 MEMS技術常用工藝技術組合有:紫外光刻、電子束光刻EBL、PVD磁控濺射、IBE刻蝕、ICP-RIE深刻蝕。
高壓SOI工藝在MEMS芯片中的應用創新:高壓SOI(絕緣體上硅)工藝是制備高耐壓、低功耗MEMS芯片的**技術,公司在0.18μm節點實現了發射與開關電路的集成創新。通過SOI襯底的埋氧層(厚度1μm)隔離高壓器件與低壓控制電路,耐壓能力達200V以上,漏電流<1nA,適用于神經電刺激、超聲驅動等高壓場景。在神經電子芯片中,高壓SOI工藝實現了128通道**驅動,每通道輸出脈沖寬度1-1000μs可調,幅度0-100V可控,脈沖邊沿抖動<5ns,確保精細的神經信號調制。與傳統體硅工藝相比,SOI芯片的寄生電容降低40%,功耗節省30%,芯片面積縮小50%。公司優化了SOI晶圓的鍵合與減薄工藝,將襯底厚度控制在100μm以下,支持芯片的柔性化封裝。該技術突破了高壓器件與低壓電路的集成瓶頸,推動MEMS芯片向高集成度、高可靠性方向發展,在植入式醫療設備、工業控制傳感器等領域具有廣闊應用前景。MEMS的超透鏡是什么?廣西現代化MEMS微納米加工
多圖拼接測量技術通過 SEM 圖像融合,實現大尺寸微納結構的亞微米級精度全景表征。發展MEMS微納米加工共同合作
金屬流道PDMS芯片與PET基板的鍵合工藝:金屬流道PDMS芯片通過與帶有金屬結構的PET基板鍵合,實現柔性微流控芯片與剛性電路的集成,兼具流體處理與電信號控制功能。鍵合前,PDMS流道采用氧等離子體活化處理(功率100W,時間30秒),使表面羥基化;PET基板通過電暈處理提升表面能,濺射1μm厚度的銅層并蝕刻形成電極圖案。鍵合過程在真空環境下進行,施加0.5MPa壓力并保持30分鐘,形成化學共價鍵,剝離強度>5N/cm。金屬流道內的電解液與外部電路通過鍵合區的Pad連接,接觸電阻<100mΩ,確保信號穩定傳輸。該技術應用于微流控電化學檢測芯片時,可在10μL的反應體系內實現多參數同步檢測,如pH、離子濃度與氧化還原電位,檢測精度均優于±1%。公司優化了鍵合設備的溫度與壓力控制算法,將鍵合缺陷率(如氣泡、邊緣溢膠)降至0.5%以下,支持大規模量產。此外,PET基板的可裁剪性與低成本特性,使得該芯片適用于一次性檢測試劑盒,單芯片成本較玻璃/硅基方案降低60%,為POCT設備廠商提供了高性價比的集成方案。發展MEMS微納米加工共同合作