SPI導入帶來的收益在線型3D錫膏檢測設備(SPI)1)據統計,SPI的導入可將原先成品PCB不合格率有效降低85%以上;返修、報廢成本大幅降低90%以上,出廠產品質量顯著提高。SPI與AOI聯合使用,通過對SMT生產線實時反饋與優化,可使生產質量更趨平穩,大幅縮短新產品導入時必須經歷的不穩定試產階段,相應成本損耗更為節省。2)可大幅降低AOI關于焊錫的誤判率,從而提高直通率,有效節約人為糾錯的人力、時間成本。據統計,當前成品PCB中74%的不合格處與焊錫有直接關系,13%有間接關系。SPI通過3D檢測手段有效彌補了傳統檢測方法的不足3)部分PCB上元器件如BGA、CSP、PLCC芯片等,由于自身特性所帶來的光線遮擋,貼片回流后AOI無法對其進行檢測。而SPI通過過程控制,極大程度減少了爐后這些器件的不良情況。4)伴隨電子產品日益精密化與焊錫無鉛化的趨勢,貼片元件越來越微型,因此,焊錫膏印刷質量正變得越來越重要。SPI能有效確保良好的錫膏印刷質量,大幅減少可能存在的成品不良率。5)作為質量過程控制的手段,能在回流焊接前及時發現質量隱患,因此幾乎沒有返修成本與報廢的可能,有效節約了成本錫膏檢查機只能做表面的影像檢查,如果有被物體覆蓋住的區域是無法檢查得到的。湛江SPI檢測設備技術參數
兩種技術類別的3D-SPI(3D錫膏檢測機)性能比較:目前,主流的3D-SPI(3D錫膏檢測機)設備主要使用兩類技術:基于結構光相位調制輪廓測量技術(PMP)與基于激光測量技術(Laser)。相位調制輪廓測量技術(簡稱PMP),是一種基于結構光柵正弦運動投影,離散相移獲取多幅被照射物光場圖像,再根據多步相移法計算出相位分布,利用三角測量等方法得到高精度的物體外形輪廓和體積測量結果。PMP-3D-SPI可使用400萬像素或者的高速工業相機,實現大FOV范圍內的錫膏三維測量以及錫膏高度方向上0.36um的解析度,在保證高速測量的同時,大幅度的提高測量精度。此外,PMP-3D-SPI可在視覺部分安裝多個投影頭,有效克服了錫膏3D測量的陰影效應。激光測量技術,采用傳統的激光光源投影出線狀光源,使相PSD或工業相機獲取圖像。激光3D-SPI使用飛行拍攝模式,在激光投影勻速移動的過程中一次性獲取錫膏的3D與2D信息。激光3D-SPI具有很快的檢測速度,但是不能在保證高精度的同時實現高速;激光光源響應好,不易受外界光照影響,此外,因為激光技術為傳統的模擬技術,激光3D-SPI的高分辨率為1um或2um。在目前的SMT設備市場中,使用激光測量類的廠商較多,更為先進的PMP-3D測量只有少數高級SPI在使用湛江半導體SPI檢測設備原理在SPI技術發展中,科學家們發現莫爾條紋光技術可以獲得更加穩定的等間距。
3分鐘了解智能制造中的AOI檢測技術AOI檢測技術具有自動化、非接觸、速度快、精度高、穩定性高等優點,能夠滿足現代工業高速、高分辨率的檢測要求,在手機、平板顯示、太陽能、鋰電池等諸多行業應用較廣。智能制造中的AOI檢測技術AOI集成了圖像傳感技術、數據處理技術、運動控制技術,在產品生產過程中,可以執行測量、檢測、識別和引導等一系列任務。簡單地說,AOI模擬和拓展了人類眼、腦、手的功能,利用光學成像方法模擬人眼的的視覺成像功能,用計算機處理系統代替人腦執行數據處理,隨后把結果反饋給執行或輸出模塊。以AOI檢測應用較廣的PCB行業為例,中低端AOI檢測設備的誤判過篩率約為70%,即捕捉到的不良品中其實有70%的成品是合格的。擁有了訓練成熟的AI技術加持后,AIAOI檢測系統不斷學習,能夠自行定義瑕疵范圍,進一步有效判別未知的瑕疵圖像。AI視覺辨識技術能輔助AOI檢測能夠大幅提升檢測設備的辨識正確率,有效降低誤判過篩率,加速生產線速度
PCBA工藝常見檢測設備SPI檢測:SolderPasteinspection錫膏測試SPI可檢測錫膏的印刷質量,可檢測錫膏的高度、面積、體積、偏移、短路等。在線SPI的作用:實時的檢測錫膏的體積和形狀。減少SMT生產線的不良,檢測結果反饋給錫膏印刷工序,及時地調整印刷機狀態和參數。AOI檢測:Automaticopticalinspection自動光學檢測所謂光學檢測即是用光學鏡頭對檢測元件進行拍照,再對照片進行分析檢測。AOI自動光學檢測儀,在SMT工廠中AOI可與放置的位置很多,但是在實際加工中一般放置在回流焊的后面,用于對經過回流焊接的PCBA進行焊接質量檢測,從而及時發現并排除少錫、少料、虛焊、連錫等缺陷。一般AOI檢測設備包括兩部分,一部分是檢測設備,一部分是返修設備,檢測設備可檢測元件的存在與缺失、元件的極性和文字符,確保貼片安裝的精確性。爐前貼片后:元件缺失/存在;偏移(X,Y,θ值);旋轉;翻件;側立;極性等。應用于3DSPI/AOI領域的DLP結構光投影模塊編碼結構光光源蓄勢待發在2D視覺時代,光源主要起到什么作用?
PCBA工藝常見檢測設備ATE檢測:AutomaticTestEquipment集成電路(IC)自動測試機,用于檢測集成電路功能之完整性,為集成電路生產制造之終流程,以確保集成電路生產制造之品質。在所有的電子元器件(Device)的制造工藝里面,存在著去偽存真的需要,這種需要實際上是一個試驗的過程。為了實現這種過程,就需要各種試驗設備,這類設備就是所謂的ATE(AutomaticTestEquipment)。這里所說的電子元器件DUT(DeviceUnderTest),當然包括IC類別,此外,還包括分立的元件,器件。ATE存在于前道工序(FrontEnd)和后道工序(BackEnd)的各個環節,具體的取決于工藝(Process)設計的要求。在元器件的工藝流程中,根據工藝的需要,存在著各種需要測試的環節。目的是為了篩選殘次品,防止進入下一道的工序,減少下一道工序中的冗余的制造費用。這些環節需要通過各種物理參數來把握,這些參數可以是現實物理世界中的光,電,波,力學等各種參量,但是,目前大多數常見的是電子信號的居多。ATE設計工程師們要考慮的較多的,還是電子部分的參數比如,時間,相位,電壓電流,等等基本的物理參數。就是電子學所說的,信號處理。在線SPI設備在實際應用中出現的一些問題有哪些呢?佛山高速SPI檢測設備技術參數
SPI檢測設備支持錯誤檢測和校正功能。湛江SPI檢測設備技術參數
莫爾條紋技術特點:1874年,科學家瑞利將莫爾條紋圖案作為一種測試手段,根據條紋形態和評價光柵尺各線紋間的間距的均勻性,從而開創了莫爾測試技術。隨著光刻技術和光電子技術水平的提高,莫爾技術獲得極快的發展,在位移測試,數字控制,伺服跟蹤,運動控制等方面有了較廣的應用。目前該技術應用在SMT的錫膏精確測量中,有著很好的優勢。莫爾條紋(即光柵)有兩個非常重要的特性:1).判向性:當指示光柵對于固定不動主光柵左右移動時,莫爾條紋將沿著近于柵向的方向上移動,可以準確判定光柵移動的方向。2).位移放大作用:當指示光柵沿著與光柵刻度垂直方向移動一個光柵距D時,莫爾條紋移動一個條紋間距B,當兩個等間距光柵之間的夾角θ較小時,指示光柵移動一個光距D,莫爾條紋就移動KD的距離。這樣就可以把肉眼無法的柵距位移變成了清晰可見的條紋位移,實驗了高靈敏的位移測量。這兩點技術應用在SPI中,就體現了莫爾條紋技術測量的穩定性和精細性。湛江SPI檢測設備技術參數
3D結構光(PMP)錫膏檢測設備(SPI)及其DLP投影光機和相機一、SPI的分類:從檢測原理上來分SPI主要分為兩個大類,線激光掃描式與面結構光柵PMP技術。1)激光掃描式的SPI通過三角量測的原理計算出錫膏的高度。此技術因為原理比較簡單,技術比較成熟,但是因為其本身的技術局限性如激光的掃描寬度偏長,單次取樣,雜訊干擾等,所以比較多的運用在對精度與重復性要求不高的錫厚測試儀,桌上型SPI等。2)結構光柵型SPIPMP,又稱PSP(PhaseShiftProfilometry)技術是一種基于正弦條紋投影和位相測量的光學三維面形測量技術。通過獲取全場條紋的空間信息與一個條紋周期內相移條紋的時序信...