目標(biāo)檢測(cè)和跟蹤是計(jì)算機(jī)視覺(jué)領(lǐng)域中的重要任務(wù)之一。隨著深度學(xué)習(xí)的興起,YOLO(You Only Look Once)算法在目標(biāo)檢測(cè)和跟蹤領(lǐng)域引起了廣關(guān)注。YOLO算法是一種在實(shí)時(shí)目標(biāo)檢測(cè)和跟蹤領(lǐng)域具有重要地位的算法。通過(guò)引入卷積神經(jīng)網(wǎng)絡(luò)和一系列先進(jìn)技術(shù),YOLO算法在速度和準(zhǔn)確性方面取得了明顯的進(jìn)展。然而,仍然有一些挑戰(zhàn)需要解決,如目標(biāo)尺度變化、小目標(biāo)檢測(cè)和復(fù)雜背景干擾等。隨著研究的不斷深入和技術(shù)的不斷發(fā)展,YOLO算法有望在實(shí)時(shí)目標(biāo)檢測(cè)和跟蹤領(lǐng)域發(fā)揮更大的作用。搭載AI智能算法的跟蹤板如何實(shí)現(xiàn)目標(biāo)識(shí)別及跟蹤?福建耐用目標(biāo)跟蹤
用檢測(cè)器模型去解決跟蹤問(wèn)題,遇到的比較大問(wèn)題是訓(xùn)練數(shù)據(jù)不足。普通的檢測(cè)任務(wù)中,因?yàn)闄z測(cè)物體的類別是已知的,可以收集大量數(shù)據(jù)來(lái)訓(xùn)練。例如 VOC、COCO 等檢測(cè)數(shù)據(jù)集,都有著上萬(wàn)張圖片用于訓(xùn)練。而如果我們將跟蹤視為一個(gè)特殊的檢測(cè)任務(wù),檢測(cè)物體的類別是由用戶在首先幀的時(shí)候所指定的。這意味著能夠用來(lái)訓(xùn)練的數(shù)據(jù)只是只是只有少數(shù)幾張圖片。這給檢測(cè)器帶來(lái)了很大的障礙。而慧視光電定制的目標(biāo)跟蹤算法可以有效的解決這個(gè)問(wèn)題,通過(guò)AI自動(dòng)圖像標(biāo)注平臺(tái)SpeedDP的大量模型部署訓(xùn)練,能夠有效解決數(shù)據(jù)訓(xùn)練不足的問(wèn)題。廣西網(wǎng)絡(luò)目標(biāo)跟蹤RK3399搭載AI智能算法,實(shí)現(xiàn)目標(biāo)識(shí)別與跟蹤。
云臺(tái)的旋轉(zhuǎn)將直接改變攝像機(jī)的視野,因此對(duì)于云臺(tái)的控制必須謹(jǐn)慎且準(zhǔn)確。錯(cuò)誤的控制會(huì)使目標(biāo)從視野中消失,導(dǎo)致跟蹤的失敗。此外,如果云臺(tái)的控制幅度過(guò)小,可能會(huì)達(dá)不到目標(biāo)回到視野中心的目的,目標(biāo)也同樣極易丟失。相反如果在對(duì)目標(biāo)運(yùn)動(dòng)速度有可靠估計(jì)的前提下,提前將目標(biāo)移到視野中目標(biāo)運(yùn)動(dòng)方向的另一側(cè),將為此后跟蹤目標(biāo)贏得更多的時(shí)間,能夠提高跟蹤的成功率。所以為了使對(duì)于云臺(tái)的控制更為合理,應(yīng)該對(duì)于不同的情況采取不同的控制策略。對(duì)于情況的劃分主要取決于目標(biāo)的可靠性和速度的穩(wěn)定性。
目標(biāo)跟蹤算法具有不同的分類標(biāo)準(zhǔn),可根據(jù)檢測(cè)圖像序列的性質(zhì)分為可見(jiàn)光圖像跟蹤和紅外圖像跟蹤;又可根據(jù)運(yùn)動(dòng)場(chǎng)景對(duì)象分為靜止背景目標(biāo)跟蹤和運(yùn)動(dòng)背景下的目標(biāo)跟蹤。由于基于區(qū)域的目標(biāo)跟蹤算法用的是目標(biāo)的全局信息,比如灰度、色彩、紋理等。因此當(dāng)目標(biāo)未被遮擋時(shí),跟蹤精度非常高、跟蹤非常穩(wěn)定,對(duì)于跟蹤小目標(biāo)效果很好,可信度高。但是在灰度級(jí)的圖像上進(jìn)行匹配和全圖搜索,計(jì)算量較大,非常費(fèi)時(shí)間,所以在實(shí)際應(yīng)用中實(shí)用性不強(qiáng);其次,算法要求目標(biāo)不能有太大的遮擋及其形變,否則會(huì)導(dǎo)致匹配精度下降,造成運(yùn)動(dòng)目標(biāo)的丟失。如何實(shí)現(xiàn)目標(biāo)識(shí)別及跟蹤?

近年來(lái),我國(guó)多地智慧城市建設(shè)取得較好的成效,諸多創(chuàng)新技術(shù)和解決方案得到廣泛應(yīng)用。而在智慧停車(chē)方面,許多公共場(chǎng)所也開(kāi)始逐步落地應(yīng)用。一車(chē)一桿的系統(tǒng),智能識(shí)別進(jìn)出入車(chē)輛,控制車(chē)輛進(jìn)出入,統(tǒng)計(jì)車(chē)位空缺數(shù),在很大程度上能夠優(yōu)化公共停車(chē)場(chǎng)的交通擁堵等問(wèn)題,能夠提高安全和通行效率。智慧停車(chē)閘道裝有車(chē)牌識(shí)別的機(jī)箱,該機(jī)箱集攝像頭、圖像處理板、顯示屏、內(nèi)存卡等設(shè)備于一體,其中圖像處理板內(nèi)置車(chē)牌識(shí)別算法,在攝像頭獲取車(chē)牌照片后,板卡算法就能進(jìn)行快速又高精度的信息識(shí)別,并上傳數(shù)據(jù)到后端控制中心,能夠有效控制車(chē)輛的合理出入,方面管理者優(yōu)化管理。Viztra-LE034圖像處理板識(shí)別概率超過(guò)85%。光纖數(shù)據(jù)目標(biāo)跟蹤生產(chǎn)企業(yè)
Viztra-LE034圖像跟蹤板采用國(guó)內(nèi)智能AI芯片。福建耐用目標(biāo)跟蹤
YOLO單卷積神經(jīng)網(wǎng)絡(luò)在一次評(píng)價(jià)中直接從全圖中預(yù)測(cè)多個(gè)boundingboxes和類概率,在全圖上訓(xùn)練并直接優(yōu)化檢測(cè)性能,同時(shí)學(xué)習(xí)目標(biāo)的泛化表示。然而,YOLO對(duì)邊界框預(yù)測(cè)施加了嚴(yán)格的空間約束,限制了模型可以預(yù)測(cè)的相鄰項(xiàng)目的數(shù)量。成群出現(xiàn)的小物件,如鳥(niǎo)類,對(duì)于此模型也同樣有問(wèn)題。fasterR-CNN,一個(gè)由全深度CNN組成的單一統(tǒng)一對(duì)象識(shí)別網(wǎng)絡(luò),提高了檢測(cè)的準(zhǔn)確性和效率,同時(shí)減少了計(jì)算開(kāi)銷。該模型集成了一種在區(qū)域方案微調(diào)之間交替的訓(xùn)練方法,使得統(tǒng)一的、基于深度學(xué)習(xí)的目標(biāo)識(shí)別系統(tǒng)能夠以接近實(shí)時(shí)的幀率運(yùn)行,然后在保持固定目標(biāo)的同時(shí)微調(diào)目標(biāo)檢測(cè)。福建耐用目標(biāo)跟蹤