玻璃基微流控芯片的精密刻蝕與鍵合工藝:玻璃因其高透光性、化學穩定性及表面平整性,成為光學檢測類微流控芯片的理想材料。公司采用濕法刻蝕與干法刻蝕結合工藝,在玻璃基板上實現1-200μm深度的微流道加工,配合雙面光刻對準技術,確保流道結構的三維高精度匹配。刻蝕后的玻璃芯片通過高溫鍵合(300-450℃)或陽極鍵合實現密封,鍵合強度可達5MPa以上,耐受高壓流體傳輸(如100kPa壓力下無泄漏)。典型應用包括熒光顯微成像芯片、拉曼光譜檢測芯片,其光滑的玻璃表面可直接進行生物分子修飾,用于DNA雜交、蛋白質吸附等反應。公司在玻璃芯片加工中攻克了大尺寸基板(如4英寸晶圓)的均勻刻蝕難題,通過優化刻蝕液配比與等離子體參數,將流道深度誤差控制在±2%以內,滿足前端科研與工業檢測對芯片一致性的嚴苛要求。熱壓印工藝實現硬質塑料微結構快速成型,降低小批量生產周期與成本。四川微流控芯片特征
微流控芯片反應信號的收集和分析的難題:由于反應體系較小,故而只產生較低的信號強度,如何收集并分析芯片中產生的信號,是微流控芯片研究的另一項重點,因此,微流控芯片大多需要龐大的信號讀取和分析設備。近年來便攜性、自動化、敏感的新型微流控芯片讀取設備受到科研人員關注。Hu等設計和制造的自動化微流控芯片檢測儀器,體積小,功能完善,能夠自動連接微流控芯片壓力出口和蠕動泵的負壓連接器,精確地操控微量液體,并通過內置檢測和分析模塊,實現自動化、可重復的快速免疫分析。此外一些團隊已設計出體積更小的手持式設備用于定量測量反應信號陜西微流控芯片互惠互利利用微流控芯片對自身抗體檢測。
微流控芯片在石英和玻璃的加工中,常常利用不同化學方法對其表面改性,然后可以使用光刻和蝕刻技術將微通道等微結構加工在上面。玻璃材料的加工步驟與硅材料加工稍有差異,主要步驟有:1)在玻璃基片表面鍍一層 Cr,再用甩膠機均勻的覆蓋一層光刻膠;2)利用光刻掩模遮擋,用紫外光照射,光刻膠發生化學反應;3)用顯影法去掉已曝光的光膠,用化學腐蝕的方法在鉻層上腐蝕出與掩模上平面二維圖形一致的圖案;4)用適當的刻蝕劑在基片上刻蝕通道;5)刻蝕結束后,除去光刻膠,打孔后和玻璃蓋片鍵合。標準光刻和濕法刻蝕需要昂貴的儀器和超凈的工作環境,無法實現快速批量生產。
硅片微流道加工在微納器件中的應用拓展:硅片作為MEMS工藝的主流材料,在微流控芯片中兼具機械強度與加工精度優勢。公司利用深硅刻蝕(DRIE)技術實現高深寬比(>20:1)微流道加工,深度可達500μm以上,適用于高壓流體控制、微反應器等場景。硅片表面通過熱氧化或氮化處理形成絕緣層,可集成微電極、壓力傳感器等功能單元,構建“芯片實驗室”(Lab-on-a-Chip)系統。例如,在腦機接口柔性電極芯片中,硅基微流道與鉑銥電極的集成設計,實現了神經信號記錄與藥物微灌注的同步功能,其生物相容性通過表面PEG涂層優化,可長期植入體內穩定工作。公司還開發了硅片與PDMS、玻璃的異質鍵合技術,解決了不同材料熱膨脹系數差異導致的應力問題,推動硅基微流控芯片在生物醫學、環境監測等領域的跨學科應用。微流控芯片技術用于液體活檢。
什么是微流控技術?微流控技術是一門精確控制和操縱流體的科學技術,這些流體在幾何空間上被限制在小規模流道中,通常流道系統的直徑低于100μm。對于科學家和工程師來講,微流體一詞的使用方式存在不同;對許多教授來說,微流控是一個科學領域,主要應用于通過直徑在100微米(μm)到1微米之間的流道研究和操縱微量流體。對微流控工程師來講,微流控芯片(通常稱為:生物MEMS芯片)的制造,主要是為了引導流體在直徑為100μm至1μm的流道系統中流動。從設計到硬質塑料芯片成型的快速工藝,大幅縮短研發周期與試產成本。湖南微流控芯片廠家電話
10-100μm 幾十微米級微流控芯片可實現多樣化結構設計與精密加工。四川微流控芯片特征
數十微米級微流控芯片的多樣化結構設計與制造:針對10-100μm尺度的微流控芯片需求,公司提供包括蛇形流道、梯度混合腔、閥門陣列等多樣化結構的定制加工。顯微鏡下可見的復雜三維結構,通過光刻膠模塑、熱壓成型及激光切割等工藝實現,適用于細胞培養、酶聯免疫反應(ELISA)及微化學反應等場景。以數字PCR芯片為例,50μm直徑的微腔陣列可將反應體系分割成數萬**單元,結合熒光檢測實現核酸分子的定量,檢測通量較傳統方法提升50%。公司在該尺度加工中注重流道流體動力學優化,通過計算流體力學(CFD)模擬流道阻力與混合效率,確保芯片內試劑傳輸的均勻性與反應可控性。同時,針對硬質塑料與PDMS材料特性,開發了高精度對準鍵合技術,解決了多材料復合芯片的密封與集成難題,廣泛應用于體外診斷試劑盒與便攜式檢測設備。四川微流控芯片特征