莫爾條紋技術特點:
1874年,科學家瑞利將莫爾條紋圖案作為一種測試手段,根據條紋形態和評價光柵尺各線紋間的間距的均勻性,從而開創了莫爾測試技術。隨著光刻技術和光電子技術水平的提高,莫爾技術獲得極快的發展,在位移測試,數字控制,伺服跟蹤,運動控制等方面有了較廣的應用。目前該技術應用在SMT的錫膏精確測量中,有著很好的優勢。莫爾條紋(即光柵)有兩個非常重要的特性:
1).判向性:當指示光柵對于固定不動主光柵左右移動時,莫爾條紋將沿著近于柵向的方向上移動,可以準確判定光柵移動的方向。
2).位移放大作用:當指示光柵沿著與光柵刻度垂直方向移動一個光柵距D時,莫爾條紋移動一個條紋間距B,當兩個等間距光柵之間的夾角θ較小時,指示光柵移動一個光距D,莫爾條紋就移動KD的距離。這樣就可以把肉眼無法的柵距位移變成了清晰可見的條紋位移,實驗了高靈敏的位移測量。這兩點技術應用在SPI中,就體現了莫爾條紋技術測量的穩定性和精細性。 在SPI技術發展中,科學家們發現莫爾條紋光技術可以獲得更加穩定的等間距。江門直銷SPI檢測設備按需定制
一、SPI的分類:
從檢測原理上來分SPI主要分為兩個大類,線激光掃描式與面結構光柵PMP技術。
1)激光掃描式的SPI通過三角量測的原理計算出錫膏的高度。此技術因為原理比較簡單,技術比較成熟,但是因為其本身的技術局限性如激光的掃描寬度偏長,單次取樣,雜訊干擾等,所以比較多的運用在對精度與重復性要求不高的錫厚測試儀,桌上型SPI等。
2)結構光柵型SPIPMP,又稱PSP(PhaseShiftProfilometry)技術是一種基于正弦條紋投影和位相測量的光學三維面形測量技術。通過獲取全場條紋的空間信息與一個條紋周期內相移條紋的時序信息,來完成物體三維信息的重建。由于其具有全場性、速度快、高精度、自動化程度高等特點,這種技術已在工業檢測、機器視覺、逆向工程等領域獲得廣泛應用。目前大部分的在線SPI設備都已經升級到此種技術。
但是它采用的離散相移技術要求有精確的正弦結構光柵與精確的相移,在實際系統中不可避免地存在著光柵圖像的非正弦化,相移誤差與隨機誤差,它將導致計算位相和重建面形的誤差。雖然已經出現了不少算法能降低線性相移誤差,但要解決相移過程中的隨機相移誤差問題,還存在一定的困難。 清遠SPI檢測設備設備廠家錫膏檢查機只能做表面的影像檢查,如果有被物體覆蓋住的區域是無法檢查得到的。
全自動錫膏印刷機是SMT整線極為重要的一環,用以印刷PCB電路板SMT錫膏。常規操作流程第一步先固定在印刷定位臺上,然后由印刷機的左右刮刀把錫膏或紅膠通過鋼網漏印于PCB線路板對應焊盤。對漏印均勻的PCB通過傳輸臺輸入至SMT貼片機進行自動貼片。
SMT制造工藝不良統計中,大部分的不良均與錫膏印刷有關,錫膏印刷工藝的好壞決定著SMT工藝的品質,這表明了錫膏自動光學檢測儀(3D-SPI)在SMT制造工藝中的重要性。
在線式3D-SPI錫膏檢測儀是連接在SMT整線全自動錫膏印刷機之后,貼片機之前,主要的功能就是以檢測錫膏印刷的品質,包括高度,面積,體積,XY偏移,形狀,橋接等。
1.印刷錫膏破壞實驗驗證目的是為了降低SPI對錫膏范圍值檢測誤報比例降低、提高人員誤判可能性、發揮設備應該發揮的功能、提升設備檢出直通率、提高生產效率。
2.同時針對每次客戶稽查SMT時所提出的’如何提高SPI直通率‘減少人員判定等問題,作出實際驗證依據,便于后續客戶稽查時,提出此問題時可以有憑有據回復。
SPI檢測機內錫膏測厚的鐳射裝置,利用光學影像來檢查品質,如若有不正確印刷的PCB通過時,SPI檢測機就會響起警報,以便及時發現錫膏印刷是否有偏移、高度偏差、缺陷破損等,在貼片前進行糾正和消除,將不良率降到較低。 D結構光(PMP)錫膏檢測設備(SPI)及其DLP投影光機和相機一、SPI的分類。
SMT整線設備中AOI的作用
隨著PCB產品向著超薄型、小組件、高密度、細間距方向快速發展。線路板上元器件組裝密度提高,PCB線寬、間距、焊盤越來越細小,已到微米級,人工目檢的方式已滿足不了,目前還有多數工廠還在采用人工目視的檢測方式,但是隨著電子產品小型化及低能耗化的市場需求越來越旺盛,電子元器件向小型化發展步伐也越來越快。此外,人容易疲勞和受情緒影響,相對于人工目檢而言,機器視覺設備具有更高的穩定性,可重復性和更高的精細度。
減少員工培訓費用:訓練一個熟練的員工的速度已經遠遠落后于員工流失的速度。
缺陷預警:即在前工序防止缺陷。我們在錫膏印刷、爐前、爐后位置都可以使用AOI產品及時截出壞機,通過現場人員的有效管控。
減少PCBA的維修成本:通過在不同品質工位應用AOI,得到制程變化對品質影響的實時反饋資料。 SPI錫膏檢查機有何能力?惠州高速SPI檢測設備設備
AOI是對器件貼裝展開檢測和對焊點展開檢測。江門直銷SPI檢測設備按需定制
AOI檢測誤判的定義及存在原困、 檢測誤判的定義及存在原困、檢測誤判的定義及存在原困誤判的三種理解及產生原因可以分為以下幾點:
1、元件及焊點本來有發生不良的傾向,但處于允收范圍。如元件本來發生了偏移,但在允收范圍內;此類誤判主要是由于闕值設 定過嚴造成的,也可能是其本身介于不良與良品標準之間,AOI與MV(人工目檢)確認造成的偏差,此類誤判是可以通過調整及 與MV協調標準來降低。
2、元件及焊點無不良傾向,但由于DFM設計時未考慮AOI的可測性,而造成AOI判定良與否有一定的難度,為保證檢出效果,將 引入一些誤判。如焊盤設計的過窄或過短,AOI進行檢測時較難進行很準確的判定,此類情況所造成的誤判較難消除,除非改進 DFM或放棄此類元件的焊點不良檢測。
3、由于AOI依靠反射光來進行分析和判定,但有時光會受到一些隨機因素的干擾而造成誤判。如元件焊端有臟物或焊盤側的印制 線有部分未完全進行涂敷有部分裸露,從而造成搜索不良等。并且檢測項目越多,可能造成的誤報也會稍多。此類誤報屬隨機誤 報,無法消除。 江門直銷SPI檢測設備按需定制
深圳市和田古德自動化設備有限公司致力于機械及行業設備,以科技創新實現高質量管理的追求。公司自創立以來,投身于全自動錫膏印刷機,全自動高速點膠機,AOI,SPI,是機械及行業設備的主力軍。和田古德不斷開拓創新,追求出色,以技術為先導,以產品為平臺,以應用為重點,以服務為保證,不斷為客戶創造更高價值,提供更優服務。和田古德創始人馬鐘民,始終關注客戶,創新科技,竭誠為客戶提供良好的服務。
3D結構光(PMP)錫膏檢測設備(SPI)及其DLP投影光機和相機一、SPI的分類:從檢測原理上來分SPI主要分為兩個大類,線激光掃描式與面結構光柵PMP技術。1)激光掃描式的SPI通過三角量測的原理計算出錫膏的高度。此技術因為原理比較簡單,技術比較成熟,但是因為其本身的技術局限性如激光的掃描寬度偏長,單次取樣,雜訊干擾等,所以比較多的運用在對精度與重復性要求不高的錫厚測試儀,桌上型SPI等。2)結構光柵型SPIPMP,又稱PSP(PhaseShiftProfilometry)技術是一種基于正弦條紋投影和位相測量的光學三維面形測量技術。通過獲取全場條紋的空間信息與一個條紋周期內相移條紋的時序信...